Magnetic Resonance in Medical Sciences
Online ISSN : 1880-2206
Print ISSN : 1347-3182
ISSN-L : 1347-3182

This article has now been updated. Please use the final version.

Bloch Simulation of a Three-point Dixon Experiment Using a Four-dimensional Numerical Phantom
Ryoichi KoseKatsumi KoseYasuhiko Terada
Author information
JOURNAL OPEN ACCESS Advance online publication

Article ID: tn.2021-0054

Details
Abstract

A 4D numerical phantom, which is defined in the 3D spatial axes and the resonance frequency axis, is indispensable for Bloch simulations of biological tissues with complex distribution of materials. In this study, a 4D numerical phantom was created using MR image datasets of a biological sample containing water and fat, and the Bloch simulations were performed using the 4D numerical phantom. As a result, 3D images of the sample containing water and fat were successfully reproduced, which demonstrated the usefulness of the concept of the 4D numerical phantom.

Content from these authors
© 2021 by Japanese Society for Magnetic Resonance in Medicine

This article is licensed under a Creative Commons [Attribution-NonCommercial-NoDerivatives 4.0 International] license.
https://creativecommons.org/licenses/by-nc-nd/4.0/
feedback
Top