ITE Transactions on Media Technology and Applications
Online ISSN : 2186-7364
ISSN-L : 2186-7364
Special Section on Multimedia Retrieval
[Invited papers] Supervised Nonparametric Multimodal Topic Models for Multi-class Video Classification
Jianfei XueKoji Eguchi
著者情報
ジャーナル フリー

2019 年 7 巻 2 号 p. 80-91

詳細
抄録

Nonparametric topic models such as hierarchical Dirichlet processes (HDP) have been attracting more and more attentions for multimedia data analysis. However, the existing models for multimedia data are unsupervised ones that purely cluster semantically or characteristically related features into a specific latent topic without considering side information such as class information. In this paper, we present a novel supervised sequential symmetric correspondence HDP (Sup-SSC-HDP) model for multi-class video classification, where the empirical topic frequencies learned from multimodal video data are modeled as a predictor of video class. Qualitative and quantitative assessments demonstrate the effectiveness of Sup-SSC-HDP.

著者関連情報
© 2019 The Institute of Image Information and Television Engineers
前の記事 次の記事
feedback
Top