Nonlinear Theory and Its Applications, IEICE
Online ISSN : 2185-4106
ISSN-L : 2185-4106
Regular Section
Augmented phase reduction for periodic orbits near a homoclinic bifurcation and for relaxation oscillators
Bharat MongaJeff Moehlis
著者情報
ジャーナル フリー

2021 年 12 巻 1 号 p. 103-116

詳細
抄録

Oscillators - dynamical systems with stable periodic orbits - arise in many systems of physical, technological, and biological interest. The standard phase reduction, a model reduction technique based on isochrons, can be unsuitable for oscillators which have a small-magnitude negative nontrivial Floquet exponent. This necessitates the use of the augmented phase reduction, a recently devised two-dimensional reduction technique based on isochrons and isostables. In this article, we calculate analytical expressions for the augmented phase reduction for two dynamically different planar systems: periodic orbits born out of homoclinic bifurcation, and relaxation oscillators. To validate our calculations, we simulate models in these dynamic regimes, and compare their numerically computed augmented phase reduction with the derived analytical expressions. These analytical and numerical calculations help us to understand conditions for which the use of augmented phase reduction over the standard phase reduction can be advantageous.

著者関連情報
© 2021 The Institute of Electronics, Information and Communication Engineers
前の記事
feedback
Top