Nonlinear Theory and Its Applications, IEICE
Online ISSN : 2185-4106
ISSN-L : 2185-4106
Special Section on Recent Progress in Nonlinear Theory and Its Applications
Applying reinforcement learning algorithms to ground station selection in satellite-terrestrial optical communication
Keigo MakizoeAtsuhiro YumotoKoji OshimaKenji SuzukiMikio Hasegawa
著者情報
ジャーナル オープンアクセス

2023 年 14 巻 2 号 p. 403-415

詳細
抄録

Non-terrestrial networks, composed of ground, air, and satellite communications, are considered one of the key components for the Beyond 5G/6G, and optical satellite communication is a fundamental technology to enable high-capacity communications. It is affected by interruptions of optical communications due to clouds on the communication link. A satellite can mitigate the interruption by switching its destination ground station to the other communication available station, though it brings additional delays in establishing optical links. In this study, we propose a ground station selection method using reinforcement learning algorithms to realize a fast and stable satellite-terrestrial optical communication system. We introduce two multi-armed bandit algorithms, Q-learning and Deep Q-learning, for the proposed method. We evaluate them using actual data of the optical satellite communication availability. Our simulation results show that the proposed method with deep Q-learning has the best average throughput. The proposed scheme efficiently follows changes in the state of communication links, and it becomes even better than fixed to ideal best link.

著者関連情報
© 2023 The Institute of Electronics, Information and Communication Engineers

This article is licensed under a Creative Commons [Attribution-NonCommercial-NoDerivatives 4.0 International] license.
https://creativecommons.org/licenses/by-nc-nd/4.0/
前の記事 次の記事
feedback
Top