Nonlinear Theory and Its Applications, IEICE
Online ISSN : 2185-4106
ISSN-L : 2185-4106
Special Section on Bifurcations
Invariant patterns in a non-invertible chaotic map by the directional coloring
Tetsushi Ueta
著者情報
ジャーナル フリー

2012 年 3 巻 4 号 p. 497-507

詳細
抄録
We propose a visualization method called the directional coloring for chaotic attractors in planer discrete systems. A color in the hue circle is assigned to the argument determined by the current point and its n-th mapped point. Some unstable n-periodic points embedded in the chaotic attractor become visible as radiation points and they can be accurately detected by combination of this coloring and the Newton's method. For a chaotic attractor in a non-invertible map, we find out invariant patterns around the fixed point and detect its nearest unstable n-periodic point. The computed results of their locations show a fractal property of the system.
著者関連情報
© 2012 The Institute of Electronics, Information and Communication Engineers
前の記事 次の記事
feedback
Top