Nonlinear Theory and Its Applications, IEICE
Online ISSN : 2185-4106
ISSN-L : 2185-4106
Special section on Communication Sciences and Engineering
A novel approach for electricity demand forecasting
Caihong LiSenhui MuJianzhou WangYi YangLian Li
著者情報
ジャーナル フリー

2014 年 5 巻 2 号 p. 184-197

詳細
抄録
In this paper, a novel approach, WPLSSVM, has been proposed for electricity demand forecasting, which combines particle swarm optimization (PSO), least squares support vector machine (LSSVM), and wavelet transform (WT). Firstly, the wavelet transform method is used to decompose the original sequence in WPLSSVM. Secondly, the WPLSSVM models the series using LSSVM, in which the parameters have been optimized by particle swarm optimization. Lastly, WPLSSVM obtains the final prediction by wavelet reconstruction. To test the model, the half-hour electricity demand series of New South Wales (NSW) in Australia has been used. The results demonstrate the validity of the approach.
著者関連情報
© 2014 The Institute of Electronics, Information and Communication Engineers
前の記事 次の記事
feedback
Top