The Journal of The Japanese Society of Balneology, Climatology and Physical Medicine
Online ISSN : 1884-3697
Print ISSN : 0029-0343
ISSN-L : 0029-0343
Symposium2 [ Foot baths ]
S2-3 Improvements in spasticity and motor function using a foot bath for people with chronic hemiparesis following stroke
Shuji MATSUMOTO
Author information
JOURNALS FREE ACCESS

2014 Volume 77 Issue 5 Pages 414-415

Details
Abstract

Objectives: Spasticity is defined as a pathological increase in muscle tonus, and increased muscle tonus of lower limbs is a major obstacle to the stroke rehabilitation. Foot baths are considered to provide beneficial thermal therapy for post-stroke patients with spasticity, but their anti-spastic effects have not been investigated comprehensively. The present study aimed to evaluate alterations in spasticity and motor function using foot baths in post-stroke patients with spastic hemiplegia.
Methods: We underwent two separate experiments each consisting of immersion in warm water up to the knee joint level, and measuring spasticity, physiological examination and motor function.
Experiment 1; Fourteen post-stroke patients with lower limb spasticity were enrolled in this study (nine males and five females; mean age 50.4±12.9 years; range, 28-65 years). The subjects’ legs from below the knee joint were immersed in water at 41°C for 15 min. Measurements of F-waves and a physiological examination were carried out immediately (within 5 min) after the foot-bath session, and again 30 min later, while the subject remained wrapped in blankets on the lift-bath stretcher.
Experiment 2; Six post-stroke patients with lower limb spasticity were enrolled in this study (five males and one female; mean age 55.2±14.6 years; range, 39-68 years). The subjects’ legs from below the knee joint were immersed in the artificial high concentration carbon-dioxide (CO2) water or tap water foot bath at 38°C for 30 min. Measurements of muscle stiffness, motor function (active range of motion: A-ROM) and a physiological examination were carried out immediately (within 5 min) after the foot-bath session, and again 10 min later, while the subject remained wrapped in blankets.
Results: None of the subjects experienced discomfort before, during or after the foot-bath treatment. The physiological examination was completed safely in all subjects.
Experiment 1; The mean values of F-wave parameters were significantly reduced after foot-bath treatment (P<0.01). The anti-spastic effects of foot-bath treatment were indicated by decreased F-wave parameters, in parallel with decreases in modified Ashworth scale (MAS) score. The body temperature was significantly increased both immediately after, and 30 min following foot-bath treatment.
Experiment 2; The changes both in the body and surface skin temperature were higher in the artificial high concentration CO2 water foot bath compared with the tap water foot bath. The changes in the MAS score, muscle stiffness and A-ROM were also higher in the high concentration CO2 water foot bath than in the tap water foot bath.
Conclusion: These findings demonstrate that the use of foot baths is an effective non-pharmacological anti-spastic treatment that might facilitate stroke rehabilitation. In addition, the high concentration CO2 water foot baths appeared to play an important role in decreased spasticity.

Information related to the author
© 2014 The Japanese Society Balneology, Climatology and Physical Medicine
Previous article Next article
feedback
Top