ORNITHOLOGICAL SCIENCE
Online ISSN : 2759-5897
Print ISSN : 1347-0558
ORIGINAL ARTICLE
Estimation of condition-dependent dispersal kernel with simple Bayesian regression analysis
Akira SAWADATetsuya IWASAKIChitose INOUEKana NAKAOKATakumi NAKANISHIJunpei SAWADANarumi ASOSyuya NAGAIHaruka ONORyota MURAKAMIMasaoki TAKAGI
著者情報
ジャーナル フリー
電子付録

2023 年 22 巻 1 号 p. 25-34

詳細
抄録

Empirical ornithologists often analyse dispersal distance by histograms separately drawn for categories of individuals (e.g., sexes), and/or by linear models with normal distribution (e.g., ANOVA). However, theoreticians describe dispersal distance by dispersal kernels with various parametric distributions. Therefore, it is a helpful exercise for empiricists to estimate dispersal kernels from field data. As a model case for such an estimation, we analysed dispersal data of the Ryukyu Scops Owls Otus elegans using a Bayesian Weibull regression model. Estimated dispersal kernels showed that males and individuals fledged from late-breeding nests had short natal dispersal distances and that no factors affected breeding dispersal significantly.

著者関連情報

この記事は最新の被引用情報を取得できません。

© 2023 The Ornithological Society of Japan
前の記事 次の記事
feedback
Top