Abstract
The liquid-gas interfacial region, which is the boundary between plasmas and liquids, activates physical and chemical reactions, thus attracting much attention as a novel reactive field in nanobiomaterial creation. Owing to the unique properties of ionic liquids such as their extremely low vapor pressure and high heat capacity, we successfully created a reactive liquid-gas (ionic liquids-plasmas) interfacial field under a low gas pressure condition, in which the plasma ion behavior can be controlled. The effects of plasma ion irradiation on the liquid medium are for the first time revealed quantitatively. In connection with the plasma ion irradiation, the potential structure and optical emission properties of the liquid-gas interfacial plasma were investigated by changing the polarity of the electrode in the liquid to evaluate liquid-plasma interactions. These results may contribute to systematizing the field of liquid-gas interfacial plasma physics for certain applications. Furthermore, novel nanobiocomposite materials, such as DNA-encapsulated carbon nanotubes, were formed using liquid-phase plasma, and for the first time, modifications of the electrical properties of nanocarbons according to the types of encapsulated DNA were demonstrated.