Abstract
Kink instability and the subsequent plasma flow during the sustainment of a coaxial gun spheromak are investigated by three-dimensional nonlinear magnetohydrodynamic simulations. Analysis of the parallel current density λ profile in the central open column revealed that the n = 1 mode structure plays an important role in the relaxation and current drive. The toroidal flow (vt ≈ 37 km/s) is driven by magnetic reconnection occurring as a result of the helical kink distortion of the central open column during repetitive plasmoid ejection and merging.