Proceedings of the Japan Academy, Series B
Online ISSN : 1349-2896
Print ISSN : 0386-2208
ISSN-L : 0386-2208
Biochemical principle of Limulus test for detecting bacterial endotoxins
Author information

2007 Volume 83 Issue 4 Pages 110-119


A hemocyte lysate from horseshoe crab (Limulus) produced a gel, when exposed to Gram-negative bacterial endotoxins, lipopolysaccharides (LPS). This gelation reaction of the lysate, so-called Limulus test, has been widely employed as a simple and very sensitive assay method for endotoxins. Recent biochemical studies on the principle of Limulus test indicate that the hemocytes contain several serine protease zymogens, which constitute a coagulation cascade triggered by endotoxins, and that there is a (1,3)-β-D-glucan-mediated coagulation pathway which also results in the formation of gel. Up to now, six protein components, designated coagulogen, proclotting enzyme, factor B, factor C, and factor G, all of which are closely associated with the endotoxin-mediated coagulation pathway, have been purified and biochemically characterized. The molecular structures of these proteins have also been elucidated. Moreover, the reconstitution experiments using the isolated clotting factors, factor C, factor B, proclotting enzyme and coagulogen in the presence of endotoxin, leads to the formation of coagulin gel. Here, I will focus on the biochemical principle of Limulus test for detecting bacterial endotoxins, and its activation and regulation mechanism on the LPS-mediated coagulation cascade.

(Communicated by Masanori OTSUKA, M.J.A.)

Content from these authors
© 2007 The Japan Academy
Previous article Next article