人工知能学会全国大会論文集
Online ISSN : 2758-7347
27th (2013)
セッションID: 3M3-OS-07d-6
会議情報

Joint estimation of multiple affects from crowdsourced annotations
*段 磊小山 聡佐藤 晴彦栗原 正仁
著者情報
会議録・要旨集 フリー

詳細
抄録

Expression of emotion, namely affect, is an important part of natural language. For a text-based affect prediction system using supervised learning algorithms, quality of training data is critical to its performance. This paper explores some methods for estimating multiple affects from multi-affect annotations obtained by crowdsourcing, taking into consideration relationships among the affects.

著者関連情報
© 2013 The Japanese Society for Artificial Intelligence
前の記事 次の記事
feedback
Top