人工知能学会全国大会論文集
Online ISSN : 2758-7347
第31回 (2017)
セッションID: 2M1-5
会議情報

Fully Convolutional Object Depth Prediction for 3D Segmentation from 2.5D Input
*和田 健太郎岡田 慧稲葉 雅幸
著者情報
会議録・要旨集 フリー

詳細
抄録

3D object segmentation is a crucial ability of machine to percept the real world environment, and previous works on this problem used 2D segmentation using rgb-d sensors. In environments with heavy occlusions, however, there are fragments in segmentation results even with mapping in multiple views. We tackle this problem with object depth prediction by convolutional networks. In our method, the occluded surface depth of objects is predicted from input rgb images, and 3d points are generated from prediction and input depth. We use datasets with 3D annotations for training, and show the performance and real-time efficiency our method.

著者関連情報
© 2017 一般社団法人 人工知能学会
前の記事 次の記事
feedback
Top