主催: The Japanese Society for Artificial Intelligence
会議名: 2018年度人工知能学会全国大会(第32回)
回次: 32
開催地: 鹿児島県鹿児島市 城山ホテル鹿児島
開催日: 2018/06/05 - 2018/06/08
Crowd behavior has been subject of study in fields like disaster evacuation, smart town planning and business strategic placing. It is possible to create a model for those scenarios using machine learning techniques and a relatively small training data set to identify behavioral. We implemented a BDI-based agent model that uses such techniques into a large-scale crowd simulator, and apply inverse reinforcement learning to adjust agents' behaviors by examples. The goal of the system is to provide to the agents a realistic behavior model and a method to orient themselves without knowing the scenario's layout, based in learnt patterns around environment features.