Host: The Japanese Society for Artificial Intelligence
Name : The 32nd Annual Conference of the Japanese Society for Artificial Intelligence, 2018
Number : 32
Location : [in Japanese]
Date : June 05, 2018 - June 08, 2018
In this study, to automatically detect underground objects from the ground penetrating radar (GPR) images by the deep neural network (DNN), we have generated GPR images for training the DNN using a fast finite-difference time-domain (FDTD) simulation with graphics processing units (GPUs). Also we have obtained characteristics of underground objects using the generated GPR images with a convolutional neural network (CNN) and finetuning using a modified VGG16 trained by the ImageNet. It is shown that the CNN and the VGG16 can identify four materials of experimental GPR images roughly 75 % and 80 % accuracy, respectively.