Host: The Japanese Society for Artificial Intelligence
Name : The 33rd Annual Conference of the Japanese Society for Artificial Intelligence, 2019
Number : 33
Location : [in Japanese]
Date : June 04, 2019 - June 07, 2019
Sleep apnea syndrome (SAS) is a prevalent disorder which causes daytime fatigue with increased risk of cardiovascular diseases. A large number of patients are undiagnosed and untreated partly because of the difficulty in performing its gold standard test, polysomnography (PSG). In this research, we propose a simple screening method utilizing heart rate variability (HRV) and long short-term memory (LSTM) which is a kind of the neural network techniques. The result of applying this algorithm to clinical data demonstrates that it can discriminate between patients and healthy people with sensitivity (100%) and specificity (100%).