Host: The Japanese Society for Artificial Intelligence
Name : The 33rd Annual Conference of the Japanese Society for Artificial Intelligence, 2019
Number : 33
Location : [in Japanese]
Date : June 04, 2019 - June 07, 2019
Recently, deep reinforcement learning with neural network shows great performance in tasks such as game AI and robotics control tasks. However, on-policy and off-policy reinforcement learning methods proposed in related works have problems such as slow exploration speed. To solve these problems, we propose a hybrid deep reinforcement learning method which combines on-policy and off-policy reinforcement learning in this paper. The comparison experiment shows that the proposed method outperforms classic DDPG and DPPO method with an obvious advantage.