Proceedings of the Annual Conference of JSAI
Online ISSN : 2758-7347
33rd (2019)
Session ID : 2Q5-J-2-04
Conference information

Variational Auto-Encoder On Stiefel Space
*Takaaki SANJOHJunpei KOMIYAMAMasashi TOYODAMasaru KITSUREGAWA
Author information
CONFERENCE PROCEEDINGS FREE ACCESS

Details
Abstract

This paper presents a reformulation of Variational Auto-Encoder (VAE) framework on a non-Euclidean manifold, the Stiefel space $\stV$. By assuming the latent space to be Stiefel manifold, we can use its intrinsic orthonormality to impose structure on the learned latent space representations. We derive an objective function and gradient descendant method for learning VAE using a probabilistic distribution on the Stiefel space.

Content from these authors
© 2019 The Japanese Society for Artificial Intelligence
Previous article Next article
feedback
Top