Host: The Japanese Society for Artificial Intelligence
Name : The 33rd Annual Conference of the Japanese Society for Artificial Intelligence, 2019
Number : 33
Location : [in Japanese]
Date : June 04, 2019 - June 07, 2019
Instead of generating image inbetween directly from adjacent frames, we propose a method based on inbetweening in latent space. We design a simple loss function which generates a latent space that represent the spatial configu- ration of image inbetween. Contrary to the frame based methods, this model can make plausible assumption about the moving objects in the image and can capture what is not seen in the images. Our model has three networks, all based on variational autoencoder, sharing same weights. We validate this model on different synthetic datasets. We show the details of our network architecture and the evaluation results.