Proceedings of the Annual Conference of JSAI
Online ISSN : 2758-7347
33rd (2019)
Session ID : 4D3-E-2-03
Conference information

Scoring and Classifying Regions via Multimodal Transportation Networks
*Aaron BRAMSONMegumi HORIZha BINGRANHirohisa INAMOTO
Author information
CONFERENCE PROCEEDINGS FREE ACCESS

Details
Abstract

In order to better understand the role of transportation convenience in location preferences, as well as to uncover transportation system patterns that span multiple modes of transportation, we score geographic regions according to properties of their multimodal transportation networks. The various scores are then used to classify regions by their dominant mode of transportation, and rank/cluster regions by their transportation features. Specifically, we analyze the train, bus, and road networks of major cities and neighborhoods of Japan to classify them as being train-centric, bus-centric, or car-centric. We also generate scores based on various transportation features to rank cities by their access to public transportation and to categorize/cluster neighborhoods of major cities by their transportation and accessibility properties. We find that business hubs (having low populations) are conveniently reachable via public transportation but vary greatly in their automobile accessibility. Suburban regions have lower connectivity overall but are typically strongly connected to at least one business area. As increasingly rural areas rely more strongly on the road and bus networks, but the network features do not correlate highly with population density.

Content from these authors
© 2019 The Japanese Society for Artificial Intelligence
Previous article Next article
feedback
Top