Host: The Japanese Society for Artificial Intelligence
Name : 34th Annual Conference, 2020
Number : 34
Location : Online
Date : June 09, 2020 - June 12, 2020
Making analogical inference in vector space has become a standard method to test the quality of word vectors. Typically the operator for the analogical inference is manually optimized for the task. In this study, we consider a systematic optimization of the metric-based rank order function for the analogical inference. If we directly evaluate the rank order function, one needs to process a few millions of word vectors every step of optimization. This causes a considerably large computational cost which makes a systematic optimization of such analogical inference intractable. In this study, we propose a theoretical approximation for this rank-order evaluation, and demonstrate an optimization of the analogical inference using the approximated evaluation. Lastly, we discuss about the ``parallelogram'' relationship, which may or may not have a deep connection with the well known ``analogy parallelogram'', revealed by the mathematical analysis of the probability of the distance-based rank order.