Host: The Japanese Society for Artificial Intelligence
Name : 34th Annual Conference, 2020
Number : 34
Location : Online
Date : June 09, 2020 - June 12, 2020
Optimization problems in machine learning (ML) often contain several tunable parameters called hyper-parameters, and careful hyper-parameter tuning is indispensable for constructing good models. If we naively solve the optimization problem for each candidate of hyper-parameters, the computational cost could be extremely large. In the field of convex optimization, there are several techniques to analyze the relationship between changes in optimal solutions and changes of hyper-parameters, and these techniques can be utilized for efficient hyper-parameter tuning. However, most of the current state of the art ML method including deep neural networks (DNN), are formulated as non-convex optimization problems, and thus the above convex-optimization techniques cannot be used as they are. In this talk, we first present the theories and algorithms of hyper-parameter tuning in convex optimization field and discuss the application of these techniques to non-convex optimization problems such as DNN.