Host: The Japanese Society for Artificial Intelligence
Name : 34th Annual Conference, 2020
Number : 34
Location : Online
Date : June 09, 2020 - June 12, 2020
Generative models has been widely applied in many computer vision scenarios. Two series of models, GenerativeAdversarial Network(GAN) and Variational Autoencoder(VAE), are getting more and more popular in represen-tation learning. Training these model on discrete sequence data generation is still challenging. We want to takeadvantage of both kind of models. In this work, we first improved a CycleGAN based model to transfer MIDI musicgenre. Then we want to find to combine the CycleGAN model together with a disentangled latent representationfrom VAE to have better understanding of music style.