主催: 一般社団法人 人工知能学会
会議名: 2021年度人工知能学会全国大会(第35回)
回次: 35
開催地: オンライン
開催日: 2021/06/08 - 2021/06/11
先行研究の畳み込みニューラルネットワークによるWeb画面のエラー検出の場合、正常とエラーの教師データへのラベル付が必要となる。Web画面のエラー検出においては、どのようなエラーが発生するが不定となるため、あらかじめエラー画面を想定して教師データを収集することが困難であった。本研究では過去に取得した画像と比較し、類似度を計算することで教師データにラベルを付けることなく、確率的にエラーの検出を行った。 この結果、Few-shot learningとして、より少ないデータで、過去のデータから教師データの特徴を強調し、またグラフ・ニューラル・ネットワーク(GNN)のリンク予測によりWeb画面のエラー候補を検出することができた。