Host: The Japanese Society for Artificial Intelligence
Name : The 35th Annual Conference of the Japanese Society for Artificial Intelligence
Number : 35
Location : [in Japanese]
Date : June 08, 2021 - June 11, 2021
Decision tree is an useful model for label classification and has high interpretability. However, the common size of training data prepared for a decision tree could lead to overfitting. Although the ensemble discriminator of decision tree prevents overfitting and earns high predictive accuracy, it will lose interpretability because of generating a large amount of random decision trees. Therefore, if we can learn a single decision tree that has the same predictive performance to the ensemble discriminator, it should be useful for actual application. In this study, we propose a method for learning a single decision tree with high accuracy with Autoencoder as a generative model, and we also use SMOTE as oversampling method to generate additional learning data by following the distribution of the target data with a small amount of computation. Finally, we show the effectiveness of the proposed method by actual data.