Host: The Japanese Society for Artificial Intelligence
Name : The 38th Annual Conference of the Japanese Society for Artificial Intelligence
Number : 38
Location : [in Japanese]
Date : May 28, 2024 - May 31, 2024
A supraglottic airway device (SGA), used for airway management during general anesthesia, provides less hemodynamic change and airway injury than tracheal intubation. However, ventilation can be difficult if laryngospasm occurs when using an SGA. Laryngospasm, an airway reflex triggered by pain or secretions, is more likely in young children and with inexperienced anesthesiologists. To use SGAs safely, it is imperative to maintain airway patency. We aimed to develop a prediction model for ventilatory difficulty in pediatric patients undergoing general anesthesia with an SGA. We analyzed the anesthesia time-series records of the 579 children. The model was trained using the data between 2018 and 2022 and was evaluated using the data from 2023. A multivariate statistical process control model achieved a 57% recall and a 0.65 times/h of false positive rate. In conclusion, we could detect approximately 60% of the ventilatory difficult events during pediatric SGA use.