Host: The Japanese Society for Artificial Intelligence
Name : The 38th Annual Conference of the Japanese Society for Artificial Intelligence
Number : 38
Location : [in Japanese]
Date : May 28, 2024 - May 31, 2024
Visual Question Answering (VQA) is the challenging task of taking images and image-related natural language questions as input and generating answers as output. In knowledge-based VQA, the image alone is often insufficient to answer questions. To provide reliable responses, AI models must acquire and ingest relevant external knowledge. However, effectively retrieving and rationally integrating such external knowledge is a challenge. We formulate a VQA approach involves employing a cross-modal retrieval-augmented generation mechanism to a modality-aligned large language model (LLM), with a 4-module pipelining of Retrieve, Generate, Augment and Select (RAGS). In this approach, we use images as queries to retrieve relevant external knowledge, which is then ingested to the modality-aligned LLM to generate answer candidates. In our experiment, we compared various methods for retrieving external knowledge and assessed their effectiveness using OK-VQA dataset. Our findings indicate that strategically applying relevant knowledge improves performance, outperforming strong baseline.