Proceedings of Annual Meeting of the Physiological Society of Japan
Proceedings of Annual Meeting of the Physiological Society of Japan
Session ID : 2S-18D4
Conference information
Role of phospholipase Cβ as a coincidence detector for retrograde endocannabinoid signaling
*Yuki HashimotodaniTakako Ohno-ShosakuMasanobu Kano
Author information
CONFERENCE PROCEEDINGS FREE ACCESS

Details
Abstract
Endocannabinoids (eCB) mediate retrograde signal at various brain regions. Postsynaptic release of eCB can suppress neurotransmitter release through activating presynaptic CB1 receptor and cause short-term or long-term synaptic plasticity. The eCB release is induced by strong increase in postsynaptic [Ca2+]i or activation of Gq/11-coupled receptors. Furthermore, coincidence of [Ca2+]i elevation and receptor activation markedly enhances eCB release. Phospholipase C (PLC) is involved in biosynthesis of the major eCB 2-arachidonoylglycerol. To determine the role of PLC in eCB release, we used cultured hippocampal neurons and monitored the eCB release by measuring CB-sensitive synaptic currents. We found that the receptor-driven eCB release was absent in PLCβ1-knockout mice. This PLCβ1-mediated eCB release was dependent on physiological levels of [Ca2+]i. We measured PLCβ1 activity in intact neurons by using exogenous TRPC6 channel as a biosensor for the PLC product diacylglycerol. The receptor-driven TRPC6 currents were absent in PLCβ1-knockout mice and showed a similar [Ca2+]i dependence to that of receptor-driven eCB release. These results indicate that PLCβ1 serves as a coincidence detector for triggering eCB release in the hippocampus. PLCβ contributes to various neuronal signaling. Therefore, Ca2+ dependency of PLCβ may play an important role in various synaptic modulations and plasticity. [J Physiol Sci. 2006;56 Suppl:S31]
Content from these authors
© 2006 The Physiological Society of Japan
Previous article Next article
feedback
Top