Abstract
An analytic model estimating the natural frequency of a weld pool is derived using energy method. The model is applied to the complex weld geometries, penetration conditions and oscillation modes. In addition to partial and full penetration, transition penetration is introduced and analyzed as the intermediate state between partial and full penetration conditions. Results show that the predicted natural frequency of the weld pool is affected by oscillation modes and geometric parameters such as the eccentricity and sidewall slope of the weld pool as well as material properties and pool dimensions.