日本リモートセンシング学会誌
Online ISSN : 1883-1184
Print ISSN : 0289-7911
ISSN-L : 0289-7911
ベイズ判別法の分類条件別精度の比較と評価
分類基準データの定量的代表性の検討
田中 章司郎
著者情報
ジャーナル フリー

1992 年 12 巻 4 号 p. 371-389

詳細
抄録

Representability of training areas is primarily focused on its qualitative spectrum features. But it was revealed by this study that the representability by a quantitative application of prior frequencies of each land-cover item also plays an important role for more accurate classification in remote sensing, increasing the rate by ten to fifteen percent for the whole scene in pixel-by-pixel evaluation.
Complete enumeration for accuracy assessment in test field was realized such that detailed digital land-use data of 10 m×10 m resolution, prepared by the Japanese Geographical Survey Institute, were aggregated to 50 m×50 m cell size in match for geocoded Landsat MSS pixels.
Changing the sampling sizes in the merged file, coupled with eight application types of Bayesian discriminant method, produced sixteen systemat-ically-conditioned classifiers to compare, and resulted that there is a great variation of accuracies by the classifier especially in terms of the applicable suitabilities in case of separating individual land-cover items.

著者関連情報
© 社団法人 日本リモートセンシング学会
次の記事
feedback
Top