計測自動制御学会論文集
Online ISSN : 1883-8189
Print ISSN : 0453-4654
ISSN-L : 0453-4654
論文
Particle Swarm Optimizationによるリカレントスパイキングニューラルネットワークの学習法
山本 昌弘黒江 康明飯間 等
著者情報
ジャーナル フリー

2010 年 46 巻 11 号 p. 685-691

詳細
抄録
In this paper, we propose a learning method of recurrent spiking neural networks by using particle swarm optimization (PSO). The existing learning method by using the gradient based method sometimes falls into local minima. The proposed method aims to find the global optimum regardless of initial solutions. Since PSO can treat optimization problems in which the objective function is a non-differentiable function, in this paper we formulate learning problems with such objective functions and propose a learning method based on PSO to solve them. The proposed method makes it possible to treat not only the learning problem in terms of firing instants which the conventional method treats, but also one in terms of the number and frequency of firings.
著者関連情報
© 2010 公益社団法人 計測自動制御学会
前の記事 次の記事
feedback
Top