計測自動制御学会論文集
Online ISSN : 1883-8189
Print ISSN : 0453-4654
ISSN-L : 0453-4654
システム・情報
強化学習を用いたスポーツロボットの大車輪運動の獲得とその行動形態の考察
坂井 直樹川辺 直人原 正之豊田 希薮田 哲郎
著者情報
ジャーナル フリー

2010 年 46 巻 3 号 p. 178-187

詳細
抄録
This paper argues how a compact humanoid robot can acquire a giant-swing motion without any robotic models by using Q-Learning method. Generally, it is widely said that Q-Learning is not appropriated for learning dynamic motions because Markov property is not necessarily guaranteed during the dynamic task. However, we tried to solve this problem by embedding the angular velocity state into state definition and averaging Q-Learning method to reduce dynamic effects, although there remain non-Markov effects in the learning results. The result shows how the robot can acquire a giant-swing motion by using Q-Learning algorithm. The successful acquired motions are analyzed in the view point of dynamics in order to realize a functionally giant-swing motion. Finally, the result shows how this method can avoid the stagnant action loop at around the bottom of the horizontal bar during the early stage of giant-swing motion.
著者関連情報
© 2010 公益社団法人 計測自動制御学会
前の記事
feedback
Top