計測自動制御学会論文集
Online ISSN : 1883-8189
Print ISSN : 0453-4654
ISSN-L : 0453-4654
論文
1次元Wiener過程による確定アファインシステムの概漸近安定化問題
西村 悠樹田中 幹也若佐 裕治
著者情報
ジャーナル フリー

2013 年 49 巻 4 号 p. 432-439

詳細
抄録
This paper shows that there is no one-dimensional Wiener process making the origins of deterministic affine systems become locally asymptotically stable with probability one. We clarify that Khasminskii's stochastic Lyapunov functions (SLFs) are not equivalent to deterministic Lyapunov functions (DLFs), and claim that Bardi and Cesaroni's almost Lyapunov functions (ALFs) are the same as DLFs with probability one. We also summarize randomization problems briefly, and explain why deterministic systems become Stratonovich-type stochastic systems by randomization with one-dimensional Wiener processes. Then, we prove that the origins of the randomized systems are not locally almost surely asymptotically stable if the original systems are not locally asymptotically stable. Further, we compare asymptotic stability with probability one ensured by global SLFs with almost sure asymptotic stability ensured by local/global ALFs via linear stochastic systems and its computer simulations.
著者関連情報
© 2013 公益社団法人 計測自動制御学会
前の記事 次の記事
feedback
Top