計測自動制御学会論文集
Online ISSN : 1883-8189
Print ISSN : 0453-4654
ISSN-L : 0453-4654
論文
階層ディリクレ過程に基づくロボットによる物体のマルチモーダルカテゴリゼーション
中村 友昭荒木 孝弥長井 隆行岩橋 直人
著者情報
ジャーナル フリー

2013 年 49 巻 4 号 p. 469-478

詳細
抄録
In this paper, we propose a nonparametric Bayesian framework for categorizing multimodal sensory signals such as audio, visual, and haptic information by robots. The robot uses its physical embodiment to grasp and observe an object from various viewpoints as well as listen to the sound during the observation. The multimodal information enables the robot to form human-like object categories that are bases of intelligence. The proposed method is an extension of Hierarchical Dirichlet Process (HDP), a kind of nonparametric Bayesian models, to multimodal HDP (MHDP). MHDP can estimate the number of categories, while the parametric model, e.g. LDA-based categorization, requires to specify the number in advance. As this is an unsupervised learning method, users do not need to give any correct labels to the robot and it can classify objects autonomously. At the same time the proposed method provides a probabilistic framework for inferring object properties from limited observations. Validity of the proposed method is shown through some experimental results.
著者関連情報
© 2013 公益社団法人 計測自動制御学会
前の記事 次の記事
feedback
Top