計測自動制御学会論文集
Online ISSN : 1883-8189
Print ISSN : 0453-4654
ISSN-L : 0453-4654
論文
強化学習における方策評価の効率化による学習の加速
泉田 啓服部 俊幸田 武久
著者情報
ジャーナル フリー

2013 年 49 巻 7 号 p. 696-702

詳細
抄録
Typical methods for solving reinforcement learning problems iterate two steps, policy evaluation and policy improvement. This study proposes algorithms for the policy evaluation to improve learning efficiency. The proposed algorithms, based on the Krylov Subspace Method (KSM), are tens to hundreds times more efficient than existing algorithms based on the Stationary Iterative Methods (SIM). Algorithms based on KSM are far more efficient than they have been generally expected. This study clarifies what makes algorithms based on KSM makes more efficient with numerical examples and theoretical discussions.
著者関連情報
© 2013 公益社団法人 計測自動制御学会
前の記事 次の記事
feedback
Top