計測自動制御学会論文集
Online ISSN : 1883-8189
Print ISSN : 0453-4654
ISSN-L : 0453-4654
論文
外れ値環境下におけるロバストSelf-tuning Controller
金田 泰昌入月 康晴山北 昌毅
著者情報
ジャーナル フリー

2014 年 50 巻 12 号 p. 836-844

詳細
抄録
In this paper, we propose a robust self-tuning controller (STC) under outliers. A parameter update law of a conventional STC consists of a recursive least squares estimation, and the estimation is given by a solution of a minimization problem of estimated errors. In the proposed method, we estimate parameters and outliers explicitly by addition of a l1 regression to the minimization problem like a robust Kalman filter via l1 regression, and the estimated outliers are removed from measurement outputs in the controller. We also analyze control performances of the proposed method under outliers, and it is shown theoretically that performances in the proposed method with outliers are nearly equal to ones in the normal STC without outliers. Numerical simulation, in which a controlled object is a non-minimum phase system, demonstrates effectiveness of the proposed method.
著者関連情報
© 2014 公益社団法人 計測自動制御学会
前の記事 次の記事
feedback
Top