計測自動制御学会論文集
Online ISSN : 1883-8189
Print ISSN : 0453-4654
ISSN-L : 0453-4654
論文
身体運動・音声・映像の特徴を用いた統合モデルによるマルチモーダルジェスチャー認識
郷津 優介小林 誠季小原 潤哉草島 育生武市 一成高野 渉中村 仁彦
著者情報
ジャーナル フリー

2015 年 51 巻 6 号 p. 390-399

詳細
抄録
Gesture recognition is used in many practical applications such as human-robot interaction, medical rehabilitation and sign language. With increasing motion sensor development, multiple data sources have become available, which leads to the rise of multi-modal gesture recognition. Since our previous approach to gesture recognition depends on a unimodal system, it was difficult to classify similar motion patterns. In order to solve this problem, a novel approach which integrates motion, audio and video models is proposed in the present paper by using dataset captured with Kinect. The proposed system can recognize observed gestures by using three models. Recognition results of three models are integrated by using the proposed framework and the output becomes the final result. The motion and audio models are constructed by using Hidden Markov Model. Random Forest which is the video classifier is used to learn the video model. In the experiments to test the performances of the proposed system, the motion and audio models most suitable for gesture recognition are chosen by varying feature vector and learning method. Additionally, the unimodal and multi-modal models are compared with respect to recognition accuracy. All the experiments are conducted on dataset provided by the competition organizer of MMGRC, which is a workshop for Multi-Modal Gesture Recognition Challenge. The comparison results show that the multi-modal model composed of three models scores the highest recognition rate. This improvement of recognition accuracy means that the complementary relationship among three models improves the accuracy of gesture recognition.
著者関連情報
© 2015 公益社団法人 計測自動制御学会
前の記事 次の記事
feedback
Top