計測自動制御学会論文集
Online ISSN : 1883-8189
Print ISSN : 0453-4654
ISSN-L : 0453-4654
論文
ベイズ学習に基づく確率論理システムの最適化
豊田 充申 鉄龍
著者情報
ジャーナル フリー

2017 年 53 巻 10 号 p. 539-546

詳細
抄録
The optimization problem of stochastic logical systems is studied in this paper. To deal with a system without knowledge of the objective function, a Bayesian optimization framework is extended with the learning algorithm called Gaussian process. Firstly, the regret bound, which represents the difference between the true optimal value and the achieved objective function value, is evaluated with exploiting the statistic features of Gaussian process. A numerical example is illustrated for the purpose of validation on the optimization algorithm afterward.
著者関連情報
© 2017 公益社団法人 計測自動制御学会
前の記事 次の記事
feedback
Top