計測自動制御学会論文集
Online ISSN : 1883-8189
Print ISSN : 0453-4654
ISSN-L : 0453-4654
論文
未知評価関数を有する連続時間最適制御問題におけるベイズ的最適化手法
豊田 充
著者情報
ジャーナル フリー

2019 年 55 巻 2 号 p. 100-109

詳細
抄録

This study presents an extension of Bayesian learning approach with Gaussian process regression focusing on continuous-time optimal control problem in which stage cost function is unknown. By applying control parametrization method, the optimal control problem can be approximately formulated as a nonlinear programming problem, and the statistics of the cost function estimated by Gaussian process regression is analyzed. To obtain a solution to Bayesian optimization problem, an effective gradient calculation based on variational method is developed. Furthermore, the analysis of optimality in the fashion of bandit problem provides the order of regret bound achieved by the proposed algorithm.

著者関連情報
© 2019 公益社団法人 計測自動制御学会
前の記事 次の記事
feedback
Top