計測自動制御学会論文集
Online ISSN : 1883-8189
Print ISSN : 0453-4654
ISSN-L : 0453-4654
論文
生産ラインにおける異常検知・非定常サイクル同定のオンラインシステム
石曽根 毅樋口 知之中村 和幸
著者情報
ジャーナル フリー

2023 年 59 巻 7 号 p. 342-352

詳細
抄録

In a factory production line, if abnormal signals can be automatically detected from time-series fluctuations in power consumption, the defect rate of products can be reduced, and productivity can be improved. Individual period estimation is often needed to detect the abnormals because deviations from the mean period provide valuable information about the failures and the abnormals. This study proposes an online system that estimates individual cycles and detects anomalies from quasi-periodic time series data represented by energy consumption data. The proposed system extracts local patterns by convolution and identifies individual cycles and abnormal signals based on similarity vectors calculated by an attention mechanism. Experimental results show that the proposed system outperforms existing methods on several simulated data sets.

著者関連情報
© 2023 公益社団法人 計測自動制御学会
前の記事
feedback
Top