計測自動制御学会論文集
Online ISSN : 1883-8189
Print ISSN : 0453-4654
ISSN-L : 0453-4654
論文
時系列情報を考慮した未学習クラス推定法に基づく5指複合動作によるロボットハンドの制御
堀松 壮吾竹中 健祐布野 大樹迎田 隆幸島 圭介
著者情報
ジャーナル 認証あり

2024 年 60 巻 12 号 p. 656-664

詳細
抄録

Various man-machine interfaces controlled by electromyogram (EMG) signals such as the myoelectric prosthetic hand have been proposed. General classifiers can not consider unintended motions in the training phase and require learning all the motions. In this paper, the authors propose a motion estimation system with unlearned classes and combined motions based on a muscle synergy model. The proposed method can identify unlearned five-finger combined motions by learning a single motion only. Furthermore, this method utilizes the history of muscle synergy and unlearned motion detection, using a state transition model. In the experiments, it was shown that the discrimination accuracy was sufficient for simple combined motions.

著者関連情報
© 2024 公益社団法人 計測自動制御学会
前の記事
feedback
Top