計測自動制御学会論文集
Online ISSN : 1883-8189
Print ISSN : 0453-4654
ISSN-L : 0453-4654
論文
範囲モデル予測型血糖値制御で用いられる入力ペナルティ関数の学習
飯村 由信若生 将史
著者情報
ジャーナル フリー

2024 年 60 巻 8 号 p. 464-475

詳細
抄録

Maintaining appropriate blood glucose levels within an acceptable range is essential for patients with type 1 diabetes. Zone model predictive control seeks to maintain its output within a given range and is often employed to keep blood glucose within the acceptable range. However, the use of a linear time-invariant model for blood glucose control results in poor accuracy for long-period predictions. Hence, previous studies implemented an input penalty function in order to correct errors in the calculated insulin dose caused by inaccurate model prediction. Parameters of the input penalty function were optimized to improve control performance for specific patient populations under one-meal scenarios, and it might not keep performance for each patient or other scenarios. In contrast, we construct a learning method of an input penalty function under the control of each patient. The learned input penalty function improves the control performance of each patient on various meals.

著者関連情報
© 2024 公益社団法人 計測自動制御学会
前の記事 次の記事
feedback
Top