計測自動制御学会論文集
Online ISSN : 1883-8189
Print ISSN : 0453-4654
ISSN-L : 0453-4654
論文
フォワーディング設計におけるデータとモデルの情報を用いた安定多様体の近似手法
伊藤 黎三田 大智椿野 大輔
著者情報
ジャーナル 認証あり

2025 年 61 巻 2 号 p. 86-96

詳細
抄録

This paper proposes a data-driven method to approximate stable manifolds in forwarding design. A control law designed with forwarding includes functions describing stable manifolds and their partial derivatives. In order to consider the approximation of partial derivatives, the proposed method constructs neural networks that fit the training data and also satisfy certain differential equations characterizing stable manifolds. We define a loss function suitable for this purpose based on the idea of Physics-Informed Neural Networks. A computational algorithm for learning with the proposed loss function is accordingly derived. The effectiveness of the proposed method is confirmed by application to an input-constrained nonlinear control for a planar quadrotor.

著者関連情報
© 2025 公益社団法人 計測自動制御学会
前の記事
feedback
Top