計測自動制御学会論文集
Online ISSN : 1883-8189
Print ISSN : 0453-4654
ISSN-L : 0453-4654
論文
連続系深層学習Neural ODEによる軌道制御則へのReservoir Computingの適用
植田 聡史小川 秀朗
著者情報
ジャーナル 認証あり

2025 年 61 巻 3 号 p. 156-165

詳細
抄録

Trajectory control laws based on neural ordinary differential equations (ODEs) were proposed by the authors in a previous study. In the present study, the trajectory control laws are extended by applying the reservoir computing framework. The parameters that correspond to the intermediate layer of the trajectory control laws using neural ODEs are excluded from the decision variables. This can significantly reduce the number of parameters to be optimized hence the computational cost for training while maintaining the structure of the control laws. This enhancement will allow for use of general-purpose nonlinear optimization algorithms, extending the application of neural ODEs to mission design optimization beyond design of control laws.

著者関連情報
© 2025 公益社団法人 計測自動制御学会
前の記事 次の記事
feedback
Top