計測自動制御学会論文集
Online ISSN : 1883-8189
Print ISSN : 0453-4654
ISSN-L : 0453-4654
論文
グラフラプラシアンで与えられる線形システムにおける初期状態とパラメータのsensitivity identifiabilityのネットワーク構造に基づく解析
山川 雅文浅井 徹有泉 亮東 俊一
著者情報
ジャーナル 認証あり

2025 年 61 巻 4 号 p. 254-265

詳細
抄録

If the true parameter of a system is unknown, a parameter estimation method is used to obtain the true parameter. One of the estimation methods is the minimization of the evaluation function of the parameter-dependent model and the observed data, which is implemented by an optimization method. Using Newton's method for this optimization, we can expect the quadratic convergence to the true parameter. However, if the true parameter is sensitivity unidentifiable (non-sensitivity identifiable (SI)), quadratic convergence is not guaranteed. Thus, detecting the true parameter being non-SI a priori is important. Considering the target system has a network structure, we can expect to use the network structure for this detection if we have a network condition that implies that the true parameter is non-SI. Therefore, in this paper, we consider linear systems with graph Laplacians as a network system class and address a problem to find the network condition that implies that the true parameter is non-SI. Then, we obtain a sufficient condition which implies that the true parameter is non-SI. The condition is explained by the graph's symmetric structure and proven by the decomposition of the graph's incidence matrix.

著者関連情報
© 2025 公益社団法人 計測自動制御学会
前の記事
feedback
Top