計測自動制御学会論文集
Online ISSN : 1883-8189
Print ISSN : 0453-4654
ISSN-L : 0453-4654
M関数を用いた一般化ボルテラ方程式系の安定性
雨宮 孝竹内 康博得丸 英勝
著者情報
ジャーナル フリー

1978 年 14 巻 6 号 p. 640-645

詳細
抄録
This paper discusses the stability of a positive equilibrium point with respect to a strictly positive orthant of solutions of the generalized Volterra equation
dxi/dt=-xifi(x) i=1, …, n
which has been used to describe physical, biophysical, chemical or biochemical systems. The population dynamics among interacting biological species and the reaction dynamics in some chemical or biochemical processes are two specific examples.
When f(x)=b+Ax, a sufficient condition for a positive equilibrium point x*=-A-1b to be stable is that A is an M-matrix. The authors show that this sufficient condition can be extended for a nonlinear f(x). It is proved that f(x) is an M-function when f(x) is nonlinear with respect to x.
著者関連情報
© 社団法人 計測自動制御学会
前の記事 次の記事
feedback
Top