計測自動制御学会論文集
Online ISSN : 1883-8189
Print ISSN : 0453-4654
ISSN-L : 0453-4654
U行列に基づく線形多変数フィードバック系のインテグリティ条件
藤田 政之示村 悦二郎
著者情報
ジャーナル フリー

1987 年 23 巻 4 号 p. 379-385

詳細
抄録

This paper is concerned with the integrity conditions for linear multivariable feedback systems. Integrity is defined as the property such that the closed-loop system remains stable against an arbitrary feedback-loop failure. A new class of matrices, called U-matrix, is introduced, by investigating the properties of the matrices whose all principal minors are units in the set of proper stable rational functions. Based on U-matrix, a necessary and sufficient condition for integrity is given with a stable plant. The result shows that integrity is ensured if and only if the sensitivity matrix is U-matrix as well as the controller being stable. Moreover, using the properties of U-matrix, some sufficient conditions for integrity are derived. It is shown that, if the sensitivity matrix is either strictly positive real or generalized diagonal dominant with all diagonal elements in the set of the units, then integrity is established provided the closed-loop system, as well as the controller, is stable. In terms of the return difference matrix and the closed-loop transfer function matrix, similar results are also derived.

著者関連情報
© 社団法人 計測自動制御学会
前の記事 次の記事
feedback
Top