計測自動制御学会論文集
Online ISSN : 1883-8189
Print ISSN : 0453-4654
ISSN-L : 0453-4654
ハミルトン行列が虚軸上の根を含む場合のリカッチ方程式の解の存在条件
西村 敏充
著者情報
ジャーナル フリー

1987 年 23 巻 5 号 p. 462-469

詳細
抄録
The conditions of existence of a unique, real, symmetric and non-negative definite solution of the matrix Reccati equation is derived when the Hamiltonian matrix composed of coefficient matrices of system equations has eigenvalues on the imaginary axis in the complex plane.
Such conditions are precisely determined based on the concept of the detectability and quasi-stabilizability.
The method established in this paper is useful in deriving stationary solutions of matrix Riccati equations when sinusoidal or constant signals are estimated by mean of Kalman filters.
著者関連情報
© 社団法人 計測自動制御学会
前の記事 次の記事
feedback
Top