計測自動制御学会論文集
Online ISSN : 1883-8189
Print ISSN : 0453-4654
ISSN-L : 0453-4654
線形多変数系における一般化インタラクタ行列
武藤 康彦崔 霖市川 邦彦
著者情報
ジャーナル フリー

1988 年 24 巻 5 号 p. 459-466

詳細
抄録
In this paper, the structure of the generalized interactor matrix of the linear multivariable systems is concerned using the properties of the di-column improperness of a polynomial matrix. The gneralized interactor matrix of a transfer matrix T(s) is defined by the polynomial matrix L(s) which satisfies lims→∞L(s)T(s)=K: K is a nonsingular constant matrix where L(s) is not necessarily a lower left triangular matrix.
The purpose of this paper is to discuss the necessary and sufficient condition for the polynomial matrix L(s) to be the generalized interactor matrix of T(s). It turnes out that the property of the minimal di-Γ-matrix which is a constant matrix derived from the numerator polynomial matrix of T(s) decides the structure of the generalized interactor matrix L(s).
著者関連情報
© 社団法人 計測自動制御学会
前の記事 次の記事
feedback
Top