計測自動制御学会論文集
Online ISSN : 1883-8189
Print ISSN : 0453-4654
ISSN-L : 0453-4654
非線形確率システムの非定常パラメータ同定の一手法
相原 伸一
著者情報
ジャーナル フリー

1989 年 25 巻 12 号 p. 1281-1288

詳細
抄録
In this paper, we consider an identification problem for a nonstationary parameter contained in stochastic nonlinear dynamical systems, whose states are modeled by stochastic boundary value processes. We review nonlinear filtering problems for stochastic boundary processes where the unknown nonstationary parameter is fixed. An equation of an unnormalized conditional distribution for Xt (system state) given by Yt (observation) and θt (parameter) is derived.
Introducing a pathwise version of this equation, existence of maximum likelihood estimates (M.L.E.) for the unknown parameter θ. is studied. The consistency property for M.L.E. is also explored under many independent experimental observation data. In order to derive a realization algorithm for M.L.E., necessary conditions for an optimal M.L.E., i.e., variational inequality and adjoint equation are presented.
著者関連情報
© 社団法人 計測自動制御学会
前の記事 次の記事
feedback
Top